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CONCURRENT MULTISCALE SIMULATION AT FINITE TEMPERATURE:
COARSE-GRAINED MOLECULAR DYNAMICS

Embedded Nanomechanics and Computer Simulation

With the advent of nanotechnology, predictive simulations of nanoscale systems have become

in great demand. In some cases nanoscale systems can be simulated directly at the level of

atoms. The atomistic techniques used range from models based on a quantum mechanical

treatment of the electronic bonds to those based on more empirical descriptions of the in-

teratomic forces. In many cases, however, even nanoscale systems are too big for a purely

atomistic approach, typically because the nanoscale device is coupled to its surroundings,

and it is necessary to simulate the entire system comprising billions of atoms. A well-known

example is the growth of nanoscale epitaxial quantum dots in which the size, shape and lo-

cation of the dot is affected by the elastic strain developed in a large volume of the substrate

as well as the local atomic bonding. The natural solution is to model the surroundings with

a more coarse-grained description, suitable for the intrinsically longer length scale. The chal-

lenge then is to develop the computational methodology suitable for this kind of concurrent

multiscale modeling, one in which the simulated length scale can be changed smoothly and

seamlessly from one region of the simulation to another while maintaining the fidelity of the

relevant mechanics, dynamics and thermodynamics.

The realization that Nature has different relevant length scales goes back at least as far as

Democritus. Some 24 centuries ago he put forward the idea that solid matter is comprised

ultimately at small scales by a fundamental constituent that he termed an atom. Implicit in

his philosophy was the idea that an understanding of the atom would lead to a more robust

understanding of the macroscopic world around us. In the intervening period, of course,

not only has the science of this atomistic picture been put on a sound footing through

the inventions of chemistry, the discovery of the nucleus and the development of quantum

mechanics and modern condensed matter physics, but a host of additional length scales with

their own relevant physics has been uncovered. A great deal of scientific innovation has

gone into the development of physical models to describe the phenomena observed at these

individual length scales.

In the past decade a growing effort has been devoted to understanding how physics at

different length scales works in concert to give rise to the observed behavior of solid materials.

The use of models at multiple length scales, especially computer models optimized in this way,

has become known as multiscale modeling. An example of multiscale modeling that we will

consider in some detail is the modeling of the elastic deformation of solids at the atomistic and

continuum levels. Clearly one kind of multiscale model would be to calculate the mass density

and elastic constants within an atomistic model, and to use those data to parameterize a
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continuum model to describe large-scale elastic deformation. Such a parameter-passing,

hierarchical approach has been used extensively to study a variety of systems (Moriarty

et al., 2002). Its success relies on the occurrence of well-separated length scales. We shall

refer to such an approach as sequential multiscale modeling.

In some systems, it is not clear how to separate the various length scales. An example

would be turbulence, in which vortex structures are generated at many length scales and

hierarchical models have to date only worked in very special cases (Townsend, 1976). Alter-

natively, the system of interest may be inhomogeneous and have regions in which small-scale

physics dominates embedded in regions governed by large-scale physics. Examples would

include fracture (Abraham et al., 2002, 1998), various nucleation phenomena (Mason et al.,

2004), nanoscale moving mechanical components on computer chips (NEMS) (Rudd and

Broughton, 1999), ion implantation and radiation damage events (Averback and Diaz de la

Rubia, 1998), epitaxial quantum dot growth (Rudd et al., 2003) and so on. In either case

hierarchical approach is not ideal, and concurrent multiscale modeling is preferred (Rudd

and Broughton, 2000). Here we focus on the inhomogeneous systems, and in particular on

systems like those mentioned above in which the most interesting behavior involves the me-

chanics of a nanoscale region, but the overall behavior also depends on how the nanoscale

region is coupled to its large-scale surroundings. This embedded nanomechanics may be

studied effectively with concurrent multiscale modeling, where regions dominated by dif-

ferent length scales are treated with different models, either explicitly through a hybrid

approach or effectively through a derivative approach.

Here we focus on the methodology of Coarse-Grained Molecular Dynamics (CGMD) (Rudd

and Broughton, 1998, 2000, 2004; Rudd, 2002), one example of a concurrent multiscale model.

CGMD describes the dynamic behavior of solids concurrently at the atomistic level and

at more coarse-grained levels. The coarse-grained description is similar to Finite Element

Modeling (FEM) of continuum elasticity, with several important distinctions. CGMD is

derived directly from the atomistic model without recourse to a continuum description.

This approach is important because it allows a more seamless coupling of the atomistic and

coarse-grained models. The other important distinction is that CGMD is designed for finite

temperature, and the coarse-graining procedure makes use of the techniques of statistical

mechanics to ensure that the model provides a robust description of the thermodynamics.

Several other concurrent multiscale models for solids have been proposed and used (Kohlhoff

et al., 1991; Tadmor et al., 1996; Broughton et al., 1999; Shilkrot et al., 2002; Curtarolo

and Ceder, 2002; Curtin and Miller, 2003). The Quasicontinuum technique is of particular

note in this context, because it too is derived entirely from the underlying atomistic model

(Tadmor et al., 1996). CGMD was the first concurrent multiscale model designed for finite

temperature simulations (Rudd and Broughton, 1998). Recently, another finite temperature

concurrent multiscale model has been developed using renormalization group techniques,

including time renormalization (Curtarolo and Ceder, 2002). This model is very interesting,
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although to date its formulation is based on bond decimation procedures that is limited to

simple models with pair-wise nearest-neighbor interactions. The formulation of CGMD is

more flexible, making it compatible with most classical interatomic potentials. It has been

applied to realistic potentials in 3D whose range extends beyond nearest neighbors.

Formulation of CGMD

Coarse-grained molecular dynamics provides a model whose minimum length scale may vary

from one location to another in the system. The CGMD formulation begins with a specifi-

cation of a mesh that defines the length scales that will be represented in each region (see

Figure 1). As in finite element modeling (Hughes, 2000), the mesh is unstructured, and it

comes with a set of shape functions that define how fields are continuously interpolated on

the mesh. For example, the displacement field is the most basic field in CGMD, and it is

approximated as

u(x) ≈
∑

j

ujNj(x), (1)

where Nj(x) is the value of the jth shape function evaluated at the point x in the undeformed

(reference) configuration. It is often useful to let Nj(x) have support at node j so that the

coefficient uj represents the displacement at node j, but it need not be so for the derivation of

CGMD. We will refer to uj as nodal displacements, bearing in mind that the coarse-grained

fields could be more general. Ultimately the usual criteria to ensure well-behaved numerics

will apply, such as the cells should not have high aspect ratios and the mesh size should not

change too abruptly; for the purposes of the formulation, the only requirement we impose is

that if a region of the mesh is at the atomic scale, the positions of the nodes coincide with

equilibrium lattice sites. This is not required for coarser regions of the mesh.

To the first approximation, CGMD is governed by mass and stiffness matrices. They are

derived from the underlying atomistic physics, described by a molecular dynamics (MD)

model (Allen and Tildesley, 1987). Define the discrete shape functions by evaluating the

shape function Nj(x) at the equilibrium lattice site x0µ of atom µ:

Njµ = Nj(x0µ). (2)

The discrete shape functions allow us to approximate the atomic displacements uµ ≈
∑

j ujNjµ.

If we were to make this a strict equality, we would be on the path to the Quasicontinuum

technique. Instead, we consider this a constraint on the system, and allow all of the uncon-

strained degrees of freedom in the system to fluctuate in thermal equilibrium.

In particular, we demand that the interpolating fields be best fits to the underlying atomistic

degrees of freedom of the system. In the case of the displacement field this requirement means
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Micron
Resonator

CG MD

Figure 1: Schematic diagram of a concurrent multiscale simulation of a NEMS silicon
microresonator4−6 to illustrate how a system may be decomposed into atomistic (MD) and
coarse-grained (CG) regions. The CG region comprises most of the volume, but the MD
region contains most of the simulated degrees of freedom. Note that the CG mesh is refined
to the atomic scale where it joins with the MD lattice.

that the nodal displacements minimize the chi-squared error of the fit:

χ2 =
∑

µ

∣∣∣∣∣uµ −
∑

j

ujNjµ

∣∣∣∣∣
2

. (3)

The minimum of χ2 is given by

uj = (NNT )−1
jk Nkµuµ ≡ fjµuµ, (4)

where repeated indices are summed and the inverse is a matrix inverse. We have intro-

duced the weighting function expressed in terms of the discrete shape function as fjµ =

(NNT )−1
jk Nkµ. Equation (4) provides the needed correspondence between the coarse and fine

degrees of freedom.

Once the weighting function fjµ is defined, the CGMD energy is defined as an average energy

over the ensemble of systems in different points in phase space satisfying the correspondence

relation (4). Mathematically, this is expressed as

E(uk, u̇k) = Z−1

∫
dxµdpµ HMD e−βHMD ∆, (5)

where Z is the constrained partition function (the same integral without the HMD pre-

exponential factor). The integral runs over the full 6Natom-dimensional MD phase space.

The inverse temperature is given by β = 1/kT . The factor HMD is the MD Hamiltonian,
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the sum of the atomistic kinetic and potential energies. The potential energy is determined

by an interatomic potential, a generalization of the well-known Lennard-Jones potential that

typically includes non-linear many-body interactions (Allen and Tildesley, 1987). The factor

∆ is a product of delta functions enforcing the constraint,

∆ =
∏

j δ
(
uj −

∑
µ uµfjµ

)
δ
(
u̇j −

∑
µ

pµ fjµ

mµ

)
. (6)

Once the energy (5) is determined, the equations of motion are derived as the corresponding

Euler-Lagrange equations.

The CGMD energy (5) consists of kinetic and potential terms. The CGMD kinetic energy

can be computed exactly using analytic techniques for any system; the CGMD potential

energy can also be calculated exactly, provided the MD interatomic potential is harmonic.

Anharmonic corrections may be computed in perturbation theory. The details are given in

Rudd and Broughton (2004). Here we focus on the harmonic case, in which the potential

energy is quadratic in the atomic displacements, and the coefficient of the quadratic term

(times 2) is known as the dynamical matrix, Dµν . The result for harmonic CGMD is that

E(uk, u̇k) = Uint +
1

2
(Mjk u̇j · u̇k + uj ·Kjkuk) , (7)

Uint = NatomEcoh + 3(Natom −Nnode)kT, (8)

Mij = mNiµNjµ, (9)

Kij =
(
fiµD

−1
µν fjν

)−1
(10)

= NiµDµνNjν −D×
iµD̃

−1
µν D×

jν , (11)

where Mij is the mass matrix and Kij is the stiffness matrix. Here again and throughout

this Article a sum is implied whenever indices are repeated on one side of an equation

unless otherwise noted. The internal energy Uint includes the total cohesive energy of the

system, NatomEcoh, as well as the internal energy of a collection of (Natom−Nnode) harmonic

oscillators at finite temperature. The form of the mass matrix (9) assumes a monatomic

lattice. A more general form is given in Rudd and Broughton (2004). The two forms of the

stiffness matrix are equivalent in principle, although in practice numerical considerations

have favored one form or the other for particular applications. The first form (10) was used

for the early CGMD applications. It is most suited for applications in which the nodal index

may be Fourier transformed, such as the computation of phonon spectra. The second form

(11) is better suited for real space applications. It depends on an off-diagonal block of the

dynamical matrix

D×
jµ = (δµρ −Njµfjρ) DρνNjν (12)

and a regularized form of the lattice Green function D̃−1
µν for the internal degrees of freedom
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that is defined in Rudd and Broughton (2004). Note that the mass matrix and the compliance

matrix (the inverse of the stiffness matrix) are weighted averages of the corresponding MD

quantities, the MD mass and MD lattice Green function, respectively.

The CGMD equations of motion are derived from the CGMD Hamiltonian (5) using the

Euler-Lagrange procedure

Mjkük = −Kjkuk + Fext
j (13)

where we have included the possibility of an external body force on node j given by Fext
j .

The anharmonic corrections to these equations of motion form an infinite Taylor series in

powers of uk (Rudd and Broughton, 2004). In regions of the mesh refined to the atomic

level, it has been shown that the infinite series sums up to the MD interatomic forces; i.e.,

the original MD equations of motion are recovered in regions of the mesh refined to the

atomic scale (Rudd and Broughton, 1998). In the case of a harmonic system, the recovery

of the MD equations of motion in the atomic limit should be clear from the equations for

the mass and stiffness matrices. In this limit Niµ = δiµ and fiµ = δiµ, so Mij = mδij and

Kij = Dij from Eqs. (9) and (10), respectively. In practice, we define two complementary

regions of the simulation. In the coarse-grained (CG) region, the harmonic CGMD equations

of motion (13) are used, whereas in the region of the mesh refined to the atomic level, called

the MD region, the anharmonic terms are restored through the use of the full MD equations

of motion. In a CGMD simulation the mass and stiffness matrices are calculated once at the

beginning of the simulation. The reciprocal space (Fourier transform) representation of the

dynamical matrix is used in order to make the calculation of the stiffness matrix tractable.

This representation implicitly assumes that the solid in the form of a crystal lattice free from

defects in the CG region.

The CGMD mass matrix involves couplings between nearest neighbor nodes in the CG

region, just as the distributed mass matrix of finite element modeling does. The fact that

the mass matrix is not diagonal is inconvenient, since a system of equations must be solved

in order to determine the nodal accelerations. The system of equations is sparse, but this

step introduces some computational overhead, and it is desirable to eliminate it. In FEM,

the distributed mass matrix is often replaced by a diagonal approximation, the lumped mass

matrix (Hughes, 2000). In CGMD, the lumped mass approximation,

M lump
ij = m δij

∑
µ

Niµ (no sum on i) (14)

has proven useful in the same way (Rudd and Broughton, 2000). This definition assumes

that the shape functions form a partition of unity, so that
∑

i Niµ = 1 for all µ.

In principle, the determination of the equations of motion together with the relevant initial

and boundary conditions completely specifies the problem. In practice, we have typically
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used a thermalized initial state and a mixture of periodic and free boundary conditions

suitable for the problem of interest. The equations of motion are integrated in time using a

velocity Verlet time integrator (Allen and Tildesley, 1987) with the conventional MD time

step used throughout the simulation. The natural time scale of the CG nodes is longer due

to the greater mass and greater compliance of the larger cells, and it would be natural to

use a longer time step in the CG region. We have found little motivation to explore this

possibility, however, since the computational cost of our simulations is typically dominated

by the MD region, so there is little to gain by speeding up the computation in the CG region.

We turn now to the question of how CGMD simulations are analyzed. Much of the analysis

of CGMD simulations is accomplished using standard MD techniques. The simulations are

typically constructed such that the most interesting phenomena occur in the MD region, and

here most of the usual MD tools may be brought to bear. Thermodynamic quantities are

calculated in the usual way, and the identification and tracking of crystal lattice defects may

be accomplished with conventional techniques.

In some cases it may be of interest to analyze the simulation in the CG region, as well. For

example, it may be of interest to plot the temperature throughout the simulation in order

to verify that the behavior at the MD/CG interface is reasonable. In MD the temperature

is directly related to the mean kinetic energy of the atoms: kT = 1
3
m〈|u̇|2〉, where the

brackets indicate the average (Allen and Tildesley, 1987). In CGMD, a similar expression

holds (Rudd and Broughton, 2004)

kT =
1

3
〈|u̇i|2〉/M−1

ii (no sum on i) (15)

where M−1
ii is the diagonal component corresponding to node i of the inverse of the mass

matrix. This analysis of the temperature and thermal oscillations is closely tied to the kinetic

energy in the CG region. Similar tools are available to analyze the potential energy and the

related quantites such as deformation, pressure and stress (Rudd and Broughton, 2004).

Validation

Validation of concurrent multiscale models is a challenge in its own right, and the devel-

opment of quantitative tools and performance measures to analyze models like CGMD has

taken place at the same time as the development of the first models. CGMD has been tested

in several ways to see how it compares with a full MD simulation of a test system, as well as

other concurrent multiscale simulations. The first test was the calculation of the spectrum

of elastic waves or phonons. The techniques to calculate these spectra in atomistic systems

have been developed long ago in the field of lattice dynamics (Born and Huang, 1954). In

general the phonon spectrum is comprised of D acoustic mode branches (where D is the

number of dimensions) together with D(Nunit−1) optical branches (where Nunit is the num-
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ber of atoms in the elementary unit cell of the crystal lattice) (Ashcroft and Mermin, 1976).

The acoustic modes are distinguished by the fact that their frequency goes to zero as their

wavelength becomes large. The infinite wavelength corresponds to uniform translation of

the system, a process that costs no energy and hence corresponds to zero frequency.

Elastic wave spectra are an interesting test of CGMD and other concurrent multiscale tech-

niques because they represent a test of dynamics and because elastic waves have a natural

length scale associated with them: the wavelength. When a coarse-grained mesh is intro-

duced, the shortest wavelengths are excluded. These modes are eliminated because they are

irrelevant in the CG region, and their elimination increases the efficiency of the simulation.

The test then is to see how well the model describes those longer wavelength modes that are

represented in the CG region.

The elastic wave spectra for solid argon were computed in CGMD on a uniform mesh for

various mesh sizes, and compared to the MD spectra and spectra computed using a FEM

model based on continuum elasticity (Rudd and Broughton, 2000, 2004). The bonds between

argon atoms were modeled with a Lennard-Jones potential cut off at the fifth shell of neigh-

boring atoms. Several interesting results were found. First, both CGMD and FEM agreed

with the MD spectrum at long wavelengths. This is to be expected, since for wavelengths

much longer than the mesh spacing, the waveform should be well represented on the mesh.

Also, at long wavelengths the FEM assumption of a continuous medium is justified, and the

slope of the spectrum gives the sound velocity, c = ω/k for k → 0. Here ω is the (angular)

frequency and k is the wave number. The error in ω(k) was found to be of order O(k2) for

FEM, as expected. It goes to zero in the long wavelength limit, k → 0. One nice feature of

CGMD was a reduced error of order O(k4) (Rudd and Broughton, 1998). Moreover, CGMD

provides a better approximation of the elastic wave spectra for all wavelengths supported on

the mesh. Of course, CGMD also has the important feature that the elastic wave spectra

are reproduced exactly when the mesh is refined to the atomic level, a property that FEM

does not possess. Interatomic forces are not merely FEM elasticity on an atomic sized grid.

Solid argon forms a face-centered cubic crystal lattice and hence has only three acoustic wave

branches in its phonon spectrum. For crystals with optical phonon branches, there is more

than one way to implement the coarse-graining, depending on the physics that is of interest,

but the general CGMD framework continues to work well (Kraczek, 2003).

The other validation of CGMD has been the study of the reflection of elastic waves from

the MD/CG interface. For applications such as crack propagation, it has proven important

to control this unphysical reflection. The reflected waves can propagate back into the heart

of the MD simulation and interfere with the processes of interest. In the case of crack

propagation, a noticeable anomaly in the crack speed occurs at the point in time when the

reflected waves reach the crack tip (Holian and Ravelo, 1995).

The reflection coefficient, a measure of the amount of elastic wave energy reflected at a given
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Figure 2: A comparison of the reflection of elastic waves from a CG region in three cases:
CGMD and two varieties of FEM. Note that the reflection coefficient is plotted on a log
scale. A similar graph plotted on a linear scale is shown in Rudd and Broughton (1998).
The dashed line marks the natural cutoff [k0 = π/(Nmaxa)], where Nmax is the number of
atoms in the largest cells. The bumps in the curves are scattering resonances. Note that at
long wavelengths CGMD offers significantly suppressed scattering.

wavelength, has been calculated for CGMD and FEM based on continuum elasticity (Rudd

and Broughton, 1998, 2004). Typical results are shown in Figure 2. Long wavelength elastic

waves are transmitted into the CG region, whereas short wavelength modes are reflected.

The short wavelengths cannot be supported on the mesh, and since energy is conserved, they

must go somewhere and they are reflected. The transmission threshold is expected to occur

at a wave number k0 = π/(Nmaxa). The CGMD threshold occurs precisely at this wave

number, while the threshold for transmission in distributed mass and lumped mass FEM

models occurs somewhat above and below this value, respectively.

The scattering in the long wavelength limit shows a generalized Rayleigh scattering behavior.

In conventional Rayleigh scattering the scattering cross-section goes like σ ∼ k4, which is

the behavior exhibited by scattering here in FEM. For CGMD, the scattering drops off more

quickly at long wavelengths, with the reflection coefficient approximately proportional to k8

(Rudd and Broughton, 2004).

One aspect of concurrent multiscale modeling that remains poorly understood is the require-

ments for a suitable mesh. Certainly, many of the desired properties are clear either from

the nature of the problem or from experience with FEM. For example, the mesh needs to be

refined to the atomic level in the MD region, so here the mesh nodes should coincide with

equilibrium crystal lattice sites. In the periphery large cells are desirable since the gain in

efficiency is proportional to the cell size. From FEM it is well known that the aspect ratio

of the cells should not be too large. Beyond these basic criteria, one is left with the task

of generating a mesh that interpolates between the atomic-sized cells in the MD region to
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Figure 3: A comparison of the reflection of elastic waves from a coarse-grained region whose
mesh varies smoothly in cell size and one with an abrupt change in cell size, both computed in
CGMD. In both cases the reflection coefficient is plotted as a function of the wave number in
units of the natural cutoff [k0 = π/(Nmaxa)], where a is the lattice constant and Nmaxa = 20a
is the maximum linear cell size in the mesh. The pronounced series of scattering resonances
in the case of the abruptly changing mesh is undesirable. The second panel is a log-linear
plot of the same data in order to show how the series of scattering resonances continues at
decreasing amplitudes to long wavelengths.

the large cells in the periphery without introducing high aspect ratio cells. One question we

have investigated is whether the abruptness of this transition matters, and indeed it does

matter.

Figure 3 shows the reflection coefficient as a function of the wave number for two meshes that

go between an MD region and a CG region with a maximum cell size of 20 lattice spacings. In

one case, the transition is made gradually, whereas in the other case it is made abruptly. The

mesh with the abrupt transition exhibits markedly increased scattering, including a series of

strong scattering resonances. Note that the envelope of the scattering curve is well defined

in the case of the abrupt mesh, a property used to calculate the scaling of the reflection

coefficient, R ∼ k8.

Outlook

CGMD provides a formalism for concurrent multiscale modeling at finite temperature. The

initial tests have been very encouraging, but there are still many ways in which CGMD can

be developed. One area of active research is numerical algorithms to make CGMD more

efficient for large simulations. The calculation of the stiffness matrix involves the inverse of

a large matrix whose size grows with the number of nodes in the CG region, NCGnode. The

calculation of the inverse scales like N3
CGnode and the matrix storage scales like N2

CGnode, for

the exact matrix without any cutoff. Even though the calculation of the stiffness matrix need
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only be done once during the simulation, the calculation has proven sufficiently onerous to

prevent the application of CGMD to the large-scale simulations for which it was originally

intended. Only now are linear scaling CGMD algorithms starting to become available.

There are several directions in which CGMD has begun to be extended for specific applica-

tions. The implementation of CGMD described in this Article conserves energy. It implicitly

makes the assumption that the only thermal fluctuations that are relevant to the problem

are those supported on the mesh. Fluctuations of the degrees of freedom that have been

integrated out are neglected. Those fluctuations can be physically relevant in several ways

(Rudd, 2002). First, they exert random and dissipative forces on the coarse-grained degrees

of freedom in a process that is analogous to the forces in Brownian motion exerted on a

large particle by the atoms in the surrounding liquid. Second, they also act as a heat bath

that is able to exchange and transport thermal energy. Finally, they can transport energy

in non-equilibrium processes, such as the waves generated by a propagating crack discussed

above.

A careful treatment of the coarse-grained system leads to a generalization of the CGMD

equations of motion presented above (Rudd, 2002). In addition to the conservative forces,

there are random and dissipative forces that form a generalized Langevin equation. The

dissipative forces involve a memory function in time and space that acts to absorb waves

that cannot be supported in the CG region. The memory kernel is similar to those that have

been discussed in the context of absorbing boundary conditions for MD simulations (Cai

et al., 2000; E and Huang, 2001), except that in CGMD the range of the kernel is shorter

because the long wavelength modes are able to propagate into the CG region and do not

need to be absorbed. Interestingly, in the case of a CG region surrounded by MD regions,

the memory kernel also contains propagators that recreate the absorbed waves on the far

side of the CG region after the appropriate propagation delay (Rudd, 2002). Of course, use

of the generalized Langevin incurs additional computational expenses both in terms of run

time and memory.

There are many other ways in which CGMD could be extended. Additional coarse-grained

fields could be introduced to model various material phenomena such as electrical polar-

ization, defect concentrations and local temperature. Fluxes such as heat flow and defect

diffusion can be included through the technique of coarse-graining the atomistic conservation

equations. CGMD provides a powerful framework in which to formulate finite temperature

multiscale models for a variety of applications.
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